5 research outputs found

    Characterization and Utilization of 600 V GaN GITs for 4.5 kW Single Phase Inverter Design

    Get PDF
    Superior properties allow for faster switching and higher power density converters. However, the fast switching capability of GaN, while theoretically beneficial to converter design, presents several challenges due to the presence of printed circuit board (PCB) and device parasitics. Therefore, it is imperative that the results of device characterization reflect actual device behavior in order to adequately model the device for converter design. This thesis focuses on characterization and utilization of 600 V/30 A Gallium Nitride gate injection transistors, or GaN GITs. The experimental data from static and dynamic characterization was used to maximize the performance of the devices in each phase leg of a 4.5 kW, single-phase, full-bridge inverter. The impact of PCB and device parasitics on switching behavior was also investigated, and a trade-off study of switching loss, overshoot voltage, and dead time loss is presented. Device packaging is also of interest regarding the design of high-frequency devices. This thesis compares the impact of two package designs for the GIT device by designing two separate inverters with the same specifications utilizing the different packages. Finally, due to the lower critical energy of the GaN HEMT during a short circuit, this thesis studies the short-circuit robustness of the devices. The performance of a unique gate sensing protection scheme is compared between two different packages, and the impact of the gate drive and protection circuit design parameters on performance is evaluated

    Aqueously altered igneous rocks sampled on the floor of Jezero crater, Mars

    No full text
    International audienceThe Perseverance rover landed in Jezero crater on Mars in February 2021. Farley et al. describe the geologic units investigated by the rover as it began to traverse the crater floor, based on images and spectroscopy. The authors found that the rocks are of igneous origin, later modified by reactions with liquid water. They also describe the collection of drilled samples for potential return to Earth by another spacecraft. Liu et al. present compositional data for these igneous rocks based on x-ray fluorescence measurements. They found similarities with some Martian meteorites and conclude that the igneous rocks formed from crystals that sank in a thick sheet of magma. Together, these studies constrain the history of Jezero crater and provide geological context for analysis of the drill samples

    Aqueously altered igneous rocks sampled on the floor of Jezero crater, Mars

    No full text
    The Perseverance rover landed in Jezero crater, Mars, to investigate ancient lake and river deposits. We report observations of the crater floor, below the crater?s sedimentary delta, finding the floor consists of igneous rocks altered by water. The lowest exposed unit, informally named SĂ©Ă­tah, is a coarsely crystalline olivine-rich rock, which accumulated at the base of a magma body. Fe-Mg carbonates along grain boundaries indicate reactions with CO2-rich water, under water-poor conditions. Overlying SĂ©Ă­tah is a unit informally named MĂĄaz, which we interpret as lava flows or the chemical complement to SĂ©Ă­tah in a layered igneous body. Voids in these rocks contain sulfates and perchlorates, likely introduced by later near-surface brine evaporation. Core samples of these rocks were stored aboard Perseverance for potential return to Earth

    Aqueously altered igneous rocks sampled on the floor of Jezero crater, Mars

    No full text
    The Perseverance rover landed in Jezero crater, Mars, to investigate ancient lake and river deposits. We report observations of the crater floor, below the crater’s sedimentary delta, finding that the floor consists of igneous rocks altered by water. The lowest exposed unit, informally named SĂ©Ă­tah, is a coarsely crystalline olivine-rich rock, which accumulated at the base of a magma body. Magnesium-iron carbonates along grain boundaries indicate reactions with carbon dioxide–rich water under water-poor conditions. Overlying SĂ©Ă­tah is a unit informally named MĂĄaz, which we interpret as lava flows or the chemical complement to SĂ©Ă­tah in a layered igneous body. Voids in these rocks contain sulfates and perchlorates, likely introduced by later near-surface brine evaporation. Core samples of these rocks have been stored aboard Perseverance for potential return to Earth.</p
    corecore